How to compose prompts together
This guide assumes familiarity with the following concepts:
LangChain provides a user friendly interface for composing different parts of prompts together. You can do this with either string prompts or chat prompts. Constructing prompts this way allows for easy reuse of components.
String prompt compositionβ
When working with string prompts, each template is joined together. You can work with either prompts directly or strings (the first element in the list needs to be a prompt).
from langchain_core.prompts import PromptTemplate
prompt = (
PromptTemplate.from_template("Tell me a joke about {topic}")
+ ", make it funny"
+ "\n\nand in {language}"
)
prompt
API Reference:
PromptTemplate(input_variables=['language', 'topic'], template='Tell me a joke about {topic}, make it funny\n\nand in {language}')
prompt.format(topic="sports", language="spanish")
'Tell me a joke about sports, make it funny\n\nand in spanish'
Chat prompt compositionβ
A chat prompt is made up a of a list of messages. Similarly to the above example, we can concatenate chat prompt templates. Each new element is a new message in the final prompt.
First, let's initialize the a ChatPromptTemplate
with a SystemMessage
.
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
prompt = SystemMessage(content="You are a nice pirate")
API Reference:
You can then easily create a pipeline combining it with other messages or message templates.
Use a Message
when there is no variables to be formatted, use a MessageTemplate
when there are variables to be formatted. You can also use just a string (note: this will automatically get inferred as a HumanMessagePromptTemplate
.)
new_prompt = (
prompt + HumanMessage(content="hi") + AIMessage(content="what?") + "{input}"
)
Under the hood, this creates an instance of the ChatPromptTemplate class, so you can use it just as you did before!
new_prompt.format_messages(input="i said hi")
[SystemMessage(content='You are a nice pirate'),
HumanMessage(content='hi'),
AIMessage(content='what?'),
HumanMessage(content='i said hi')]
Using PipelinePromptβ
LangChain includes a class called PipelinePromptTemplate
, which can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts:
- Final prompt: The final prompt that is returned
- Pipeline prompts: A list of tuples, consisting of a string name and a prompt template. Each prompt template will be formatted and then passed to future prompt templates as a variable with the same name.
from langchain_core.prompts import PipelinePromptTemplate, PromptTemplate
full_template = """{introduction}
{example}
{start}"""
full_prompt = PromptTemplate.from_template(full_template)
introduction_template = """You are impersonating {person}."""
introduction_prompt = PromptTemplate.from_template(introduction_template)
example_template = """Here's an example of an interaction:
Q: {example_q}
A: {example_a}"""
example_prompt = PromptTemplate.from_template(example_template)
start_template = """Now, do this for real!
Q: {input}
A:"""
start_prompt = PromptTemplate.from_template(start_template)
input_prompts = [
("introduction", introduction_prompt),
("example", example_prompt),
("start", start_prompt),
]
pipeline_prompt = PipelinePromptTemplate(
final_prompt=full_prompt, pipeline_prompts=input_prompts
)
pipeline_prompt.input_variables
API Reference:
['person', 'example_a', 'example_q', 'input']
print(
pipeline_prompt.format(
person="Elon Musk",
example_q="What's your favorite car?",
example_a="Tesla",
input="What's your favorite social media site?",
)
)
You are impersonating Elon Musk.
Here's an example of an interaction:
Q: What's your favorite car?
A: Tesla
Now, do this for real!
Q: What's your favorite social media site?
A:
Next stepsβ
You've now learned how to compose prompts together.
Next, check out the other how-to guides on prompt templates in this section, like adding few-shot examples to your prompt templates.